

EMADE for Intelligence Surveillance and Reconnaissance Applications

November 5th, 2018

Jason Zutty Rodd Talebi Austin Dunn Roland Samuelson Gregory Rohling

EMADE Successes

Combating Terrorism Technical Support Office

Better mission planning for first responders = Lives saved

Objective measurements of behaviors = A voice for dogs

Georgia Research Tech Institute

Expanding EMADE's Applicability

Intelligence Surveillar

3

Our vision is to be able to apply EMADE to all domains that pose challenging problems for researchers

BD Poinclouds be able to Il domains

ud Processing

Automated Vehicle & Personnel Detection

Radar Emitter Classification

Georgia Research Tech Institute

Classification	Regression	Ensemble	Windowing Functions	Filters	Transforms
Classification k-Nearest Neighbor Classifier Support Vector Machine Classifier Decision Tree Classifier Random Forest Classifier Naive Bayes Classifier Logistic Regression Classifier Gaussian Mixture Model Classifier Best Linear Unbiased Predictor Orthogonal Matching Pursuit KMeans Stochastic Gradient Descent	Regression k-Nearest Neighbor Regressor Support Vector Machine Regressor Decision Tree Regressor Random Forest Regressor Gradiant Boosting Regressor LightGBM [48] 222 Machine [48]	Ensemble Adaboost Bagged Learner ExtraTrees XGBoost [47]	Windowing Functions Hann Hamming Tukey Cosine Lanczos Triangular Bartlett Gaussian Bartlett Hann Blackman Kaiser Planck Taper Nuttall	Filters Averaging Difference Kalman Wiener Savitzky-Golay	Transforms Discrete cosine transform Fast Fourier transform Discrete wavelet transform Principal component analysis Independent component analysis Sparse principal component analysis Linear predictive coding Empirical cumulative distribution function
Passive Aggressive Classifier	Learni	ng	Blackman Harris Blackman Nuttall Flat top	Pro(cessing

Math Functions Autocorrelation p-Norm Root mean square Sum Cumulative sum Product Cumulative product Absolute value Log Arcsine Arccosine Arctangent Sine Cosine Tangent Exponential Cross correlation

Clustering	Affinity propagation	Mean shift	Dbscan	Spectral				
crustering	K-means	Agglomerative	Birch					
Feature Selection	K-Best	Percentile	Fpr	Fdr				
	Generic Univariate	Fwe	Varience Threshold					
	Minimum to zero	To uint8	To uint8 scaled	To float		•		
Image Processing	To Float normalize	Edge detection Canny	Corner detection Harris	Corner detection min eigenval				
	Highpass Fourier ellipsoid	Lowpass Fourier shift	Highpass Fourier shift	Highpass Fourier Gaussian				
	Highpass Fourier uniform	Highpass unsharp mask	Highpass Laplacian	Highpass Sobel derivative	7			
	Lowpass filter median	Median blur	Lowpass filter average	Blur		(`IIIQFAPIR <i>A</i>		
	Lowpass filter Gaussian	Lowpass filter bilateral	Lowpass Fourier elipsoid	Lowpass Fourier Gaussian				
	Lowpass Fourier uniform	Threshold binary	Threshold to zero	Morph erosion rect	_			
	Morph erosion ellipse	Morph erosion cross	Morph dilate rect	Morph dilate ellipse				
	Morph dilate cross	Morph open rect	Morph open ellipse	Morph open cross		Cashina Caladian		
	Morph close rect	Morph close ellipse	Morph close cross	Morph gradient rect		realure seleciu		
	Morph gradient ellipse	Morph gradient cross	Morph tophat rect	Morph tophat ellipse		i akacia daiaaaali		
	Morph tophat cross	Morph blackhat rect	Morph blackhat ellipse	Morph blackhat cross				
	Contours all	Contours min area	Contours max area	Countours convex concave				
	Contours min length	Contours max length	Contour mask	Contour mask min area				
	Contour mask max area	Contour mask convex	Contour mask min length	Contour mask max length		a Tiigae		
	Contour Mask range length	Contour mask min enclosing circle	Contour mask max enclosing circle	Contour mask min extent enclosit	ng circle			
	Contour mask max extent enclosing circle	Contour mask range extent enclosing circle	Contour mask min aspect ratio	Contour mask max aspect ratio				
	Contour mask range aspect ratio	Contour mask min extent	Contour mask max extent	Contour mask range extent		Maaaaa ima		
	Contour mask min solidity	Contour mask max solidity	Contour mask range solidity	Contour mask min equ diameter				
	Contour mask max equ diameter	Contour mask range equ diameter	Threshold n largest	Threshold n largest binary		a a a a a a a a a a a a a a a a a a a		

Caching

- Subtrees are exchanged constantly through the evolutionary process, meaning many individuals process the same data.
- For expensive primitives, we cache results on disk by...
 - 1. Compute a hash of the input data to the primitive:
 - E.g., b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9
 - 2. Create a unique identifier by combining the hash with the primitive name and input parameters:
 - E.g., knn_3_ b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9
 - 3. If the hash exists on disk, read it in, else write it after processing.
- Each generation clean the cache in a way to maximize benefit without exceeding storage:
 - $\sum_i r_i t_i$,

Where r is the hit rate of a unique identifier and t is the time it took to process initially.

Batched Learning

- Batched learning is useful for processing data piecemeal.
- Added the capability to EMADE to reduce memory usage when primitives allow for batched processing:
 - Signal processing algorithms such as DWT or FFT that do not require fitting
 - Machine learning algorithms that support batched learning:
 - Passive Aggressive Classifier
 - Stochastic Gradient Descent
 - Deep Neural Networks with Keras
 - Etc...
- Currently, batch size is an input to EMADE, and not something that is optimized.

xView Challenge

- Open overhead imagery challenge with a large dataset
 - 1 Million object instances
 - 60 Different object classes
- We used the data to implement a binary classifier for buildings
 - Carved imagery into 224x224 pixel image chips
 - Predict a 1 when building in chip, 0 otherwise.

Intelligence Surveillance and Reconnaissance

Traditional Computer Vision Techniques

- Histogram of Oriented Gradients
- Daisy Features
- Canny Transform
- Grey Level Co-Occurrence Matrices
 Grey Level Co-Occurrence Matrices
 Grey Level Co-Occurrence matrix features

Input image

9 DAISY descriptors extracted:

Histogram of Oriented Gradients

xView Results

Example Data Flow

Example Data Flow

Analysis of Performance

- An evaluation on the first-tier dataset took EMADE on average 72.53 seconds, while the second-tier averaged 522.31 seconds.
- Out of 5,270 candidate algorithms, EMADE found 3053 that did not perform well enough to promote to the next tier.
 - This means the tiered dataset structure saved 381 CPU-hours of processing time at the expense of 44.66 CPU-hours of redundant computation on successful individuals.
- Over the course of the optimization, EMADE ran for a total of approximately 430 CPUhours. Without a tiered structure, EMADE would have taken 765 CPU-hours.
 - Therefore, the tiered dataset structure offered a savings of about 44 percent.
- Our caching implementation netted 58 hours, which represents about a 12% improvement overall in EMADE throughput.

Path Forward: Deep Neural Networks

- Several different ways that DNN's can play a role in EMADE
 - 1. Implement pre-trained models as classifiers
 - 2. Train pre-trained models using transfer learning
 - 3. Optimize architectures and hyperparameters

• We recently began exploring all three paths forward for the "Army Signal Challenge", which involves classifying different RF signals.

Augmenting ISR Analysts with AutoML

• EMADE quickly adapts to new challenges as soon as new data is available

EMADE as a Fusion Engine

- Paradigm for EMADE is data in, algorithms out.
- EMADE allows data to flow freely through the tree structure.
- Fusion can be performed by allowing for multiple input sources within EMADE or as single data objects with multiple dimensions.
 - Truth data needs to be synchronized.
 - If performed as single data objects, primitives need to process the non-uniform arrays.

Vertically Integrated Projects

- Largest VIP team of 45+ students, 60+ students expected this spring
- Active development and application of our EMADE framework
- Resulted in 10 student assistants already deeply familiar with our work
 - 4 hold clearances

Quantitative Financial Analysis

Natural Language Processing

Speech to Text

Questions?